Statistics Technical Reports: Search | Browse by year | Contact us

A genotype calling algorithm for Affymetrix SNP arrays

Author(s): Rabbee, Nusrat; Speed, Terence P.
Report ID: 693
Date issued: August 2005

693.pdf (PDF)

Abstract: Motivation: A classification algorithm, based on a multi-chip, multi-SNP approach is proposed for Affymetrix SNP arrays. Current procedures for calling genotypes on SNP arrays process all the features associated with one chip and one SNP at a time. Using a large training sample where the genotype labels are known, we develop a supervised learning algorithm to obtain more accurate classification results on new data. The method we propose, RLMM, is based on a robustly fitted, linear model and uses the Mahalanobis distance for classification. The chip-to-chip non-biological variance is reduced through normalization. This model-based algorithm captures the similarities across genotype groups and probes, as well as across thousands of SNPs for accurate classification. In this paper, we apply RLMM to Affymetrix 100K SNP array data, present classification results and compare them to genotype calls obtained from the Affymetrix procedure DM, as well as to the publicly available genotype calls from the HapMap project. Availability: The RLMM software is implemented in R and is available from the first author at